Showing posts with label familial. Show all posts
Showing posts with label familial. Show all posts
Saturday, November 30, 2013

ARMC5 Mutations in Macronodular Adrenal Hyperplasia with Cushing's Syndrome

adrenal-hyperplasia

Guillaume Assié, M.D., Ph.D., Rossella Libé, M.D., Stéphanie Espiard, M.D., Marthe Rizk-Rabin, Ph.D., Anne Guimier, M.D., Windy Luscap, M.Sc., Olivia Barreau, M.D., Lucile Lefèvre, M.Sc., Mathilde Sibony, M.D., Laurence Guignat, M.D., Stéphanie Rodriguez, M.Sc., Karine Perlemoine, B.S., Fernande René-Corail, B.S., Franck Letourneur, Ph.D., Bilal Trabulsi, M.D., Alix Poussier, M.D., Nathalie Chabbert-Buffet, M.D., Ph.D., Françoise Borson-Chazot, M.D., Ph.D., Lionel Groussin, M.D., Ph.D., Xavier Bertagna, M.D., Constantine A. Stratakis, M.D., Ph.D., Bruno Ragazzon, Ph.D., and Jérôme Bertherat, M.D., Ph.D.
N Engl J Med 2013; 369:2105-2114 November 28, 2013 DOI: 10.1056/NEJMoa1304603

BACKGROUND

Corticotropin-independent macronodular adrenal hyperplasia may be an incidental finding or it may be identified during evaluation for Cushing’s syndrome. Reports of familial cases and the involvement of both adrenal glands suggest a genetic origin of this condition.

METHODS

We genotyped blood and tumor DNA obtained from 33 patients with corticotropin-independent macronodular adrenal hyperplasia (12 men and 21 women who were 30 to 73 years of age), using single-nucleotide polymorphism arrays, microsatellite markers, and whole-genome and Sanger sequencing. The effects of armadillo repeat containing 5 (ARMC5) inactivation and overexpression were tested in cell-culture models.

RESULTS

The most frequent somatic chromosome alteration was loss of heterozygosity at 16p (in 8 of 33 patients for whom data were available [24%]). The most frequent mutation identified by means of whole-genome sequencing was in ARMC5, located at 16p11.2. ARMC5 mutations were detected in tumors obtained from 18 of 33 patients (55%). In all cases, both alleles of ARMC5 carried mutations: one germline and the other somatic. In 4 patients with a germline ARMC5 mutation, different nodules from the affected adrenals harbored different secondary ARMC5 alterations. Transcriptome-based classification of corticotropin-independent macronodular adrenal hyperplasia indicated that ARMC5 mutations influenced gene expression, since all cases with mutations clustered together. ARMC5 inactivation decreased steroidogenesis in vitro, and its overexpression altered cell survival.

CONCLUSIONS

Some cases of corticotropin-independent macronodular adrenal hyperplasia appear to be genetic, most often with inactivating mutations of ARMC5, a putative tumor-suppressor gene. Genetic testing for this condition, which often has a long and insidious prediagnostic course, might result in earlier identification and better management. (Funded by Agence Nationale de la Recherche and others.)
Supported in part by grants from Agence Nationale de la Recherche (ANR-10-Blan-1136), Corticomedullosurrénale Tumeur Endocrine Network (Programme Hospitalier de Recherche Clinique grant AOM95201), Assistance Publique–Hôpitaux de Paris (Clinical Research Center Grant Genhyper P061006), Institut National du Cancer (Recherche Translationelle 2009-RT-02), the Seventh Framework Program of the European Commission (F2-2010-259735), INSERM (Contrat d’Interface, to Dr. Assié), the Conny-Maeva Charitable Foundation, and the intramural program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.
Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.
Drs. Assié, Libé, Espiard, Rizk-Rabin, Ragazzon, and Bertherat contributed equally to this article.
We thank Drs. J. Chelly and M. Delpech of the cell bank of Cochin Hospital and Dr. B. Terris of the tumor bank of Cochin Hospital for their help in sample collection; Dr. E. Clauser of the oncogenetic unit of Cochin Hospital for help in microsatellite analysis; Drs. J. Guibourdenche and E. Clauser of the hormone biology unit of Cochin Hospital for cortisol assays; Drs. F. Tissier and Pierre Colin for pathological analysis; Anne Audebourg for technical assistance; J. Metral and A. de Reynies of the Cartes d’Identité des Tumeurs program of Ligue Nationale contre le Cancer for help in genomics studies and fruitful discussions; Dr. P. Nietschke of the bioinformatics platforms of Paris Descartes University for helpful discussions; all the members of the Genomics and Signaling of Endocrine Tumors team and of the genomic platform of Cochin Institute for their help in these studies; and the patients and their families, as well as the physicians and staff involved in patient care, for their active participation.

SOURCE INFORMATION

From INSERM Unité 1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut Cochin (G.A., R.L., S.E., M.R.-R., A.G., W.L., O.B., L.L., S.R., K.P., F.R.-C., F.L., L. Groussin, X.B., B.R., J.B.), Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité (G.A., S.E., A.G., O.B., L.L., M.S., K.P., F.R.-C., L. Groussin, X.B., J.B.), Department of Endocrinology, Referral Center for Rare Adrenal Diseases (G.A., R.L., O.B., L. Guignat, L. Groussin, X.B., J.B.), and Department of Pathology (M.S.), Assistance Publique–Hôpitaux de Paris, Hôpital Cochin, and Unit of Endocrinology, Department of Obstetrics and Gynecology, Hôpital Tenon (N.C.-B.) — all in Paris; Unit of Endocrinology, Centre Hospitalier du Centre Bretagne, Site de Kério, Noyal-Pontivy (B.T.), Unit of Endocrinology, Hôtel Dieu du Creusot, Le Creusot (A.P.), and Department of Endocrinology Lyon-Est, Groupement Hospitalier Est, Bron (F.B.-C.) — all in France; and the Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics and the Pediatric Endocrinology Inter-Institute Training Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (C.A.S.).
Address reprint requests to Dr. Bertherat at Service des Maladies Endocriniennes et Métaboliques, Centre de Référence des Maladies Rares de la Surrénale, Hôpital Cochin, 27 rue du Faubourg St. Jacques, 75014 Paris, France, or at jerome.bertherat@cch.aphp.fr.
Access this article: Subscribe to NEJM | Purchase this article

Friday, June 17, 2011

Familial Pituitary Tumor Syndromes

Journal Endocrine Practice
Publisher American Association of Clinical Endocrinologists
ISSN 1530-891X (Print)
1934-2403 (Online)
Subject Health Services, Medical Sciences and Endocrinology
Pages 1-16
DOI 10.4158/EP11064.RA
Online Date Wednesday, May 25, 2011

 

 

Authors
Vladimir Vasilev, MD1, 2, Adrian F. Daly, MB, BCh, MSc1, Patrick Petrossians, MD1, Sabina Zacharieva, MD, PhD2, Albert Beckers, MD, PhD1

1Department of Endocrinology, University of Liège, Belgium
2Clinical Center of Endocrinology and Gerontology, Medical University, Sofia, Bulgaria

Abstract

Objective: To summarize current knowledge on the clinical and genetic characteristics of familial pituitary tumor syndromes.

Methods: This review is based on comprehensive literature search through the English-language literature using "familial", "pituitary" "adenomas" and "tumors" as search terms.

Results: Familial pituitary tumors are rare and comprise approximately 5 % of all pituitary adenomas. Currently, there are four recognized inherited syndromes that involve pituitary tumorigenesis - multiple endocrine neoplasia type 1 (MEN 1) and type 4 (MEN 4), Carney complex and familial isolated pituitary adenomas (FIPA). MEN 1 and CNC have been known for several decades and their clinical and molecular characteristics have been comprehensively studied. Many familial cases of pituitary adenomas can be attributed to mutations in MEN1 and PRKAR1A genes. The recently defined MEN 4 is extremely rare. Familial pituitary tumors that are not associated with MEN 1 and CNC have been united under a new term introduced in the 1990's: FIPA. About 15-25% of FIPA patients harbor mutations in the AIP gene.

Conclusion: Although rare, familial pituitary tumors present an opportunity to study inherited molecular and genetic mechanisms of pituitary tumorigenesis. A comprehensive understanding of their characteristics may provide basis for better diagnosis and management of affected patients.

Keywords
pituitary adenoma, multiple endocrine neoplasia type 1, Carney complex, familial isolated pituitary adenomas, FIPA

Show References

 

From http://aace.metapress.com/content/l870r1j66r371206/