Among the important early researchers in X-rays were Professor Ivan Pulyui, Sir William Crookes, Johann Wilhelm Hittorf, Eugen Goldstein, Heinrich Hertz, Philipp Lenard, Hermann von Helmholtz, Nikola Tesla, Thomas Edison, Charles Glover Barkla, Max von Laue, and Wilhelm Conrad Röntgen.
Wilhelm Röntgen
On November 8, 1895, Wilhelm Conrad Röntgen, a German physics professor, began observing and further documenting X-rays while experimenting with Lenard and Crookes tubes. Röntgen, on December 28, 1895, wrote a preliminary report "On a new kind of ray: A preliminary communication". He submitted it to the Würzburg's Physical-Medical Society journal.[13] This was the first formal and public recognition of the categorization of X-rays. Röntgen referred to the radiation as "X", to indicate that it was an unknown type of radiation. The name stuck, although (over Röntgen's great objections), many of his colleagues suggested calling them Röntgen rays. They are still referred to as such in many languages, including German. Röntgen received the first Nobel Prize in Physics for his discovery. There are conflicting accounts of his discovery because Röntgen had his lab notes burned after his death, but this is a likely reconstruction by his biographers.[14] Röntgen was investigating cathode rays with a fluorescent screen painted with barium platinocyanide and a Crookes tube which he had wrapped in black cardboard so the visible light from the tube wouldn't interfere. He noticed a faint green glow from the screen, about 1 meter away. The invisible rays coming from the tube to make the screen glow were passing through the cardboard. He found they could also pass through books and papers on his desk. Röntgen threw himself into investigating these unknown rays systematically. Two months after his initial discovery, he published his paper. Röntgen discovered its medical use when he saw a picture of his wife's hand on a photographic plate formed due to X-rays. His wife's hand's photograph was the first ever photograph of a human body part using X-rays.
Johann Hittorf
Physicist Johann Hittorf (1824 – 1914) observed tubes with energy rays extending from a negative electrode. These rays produced a fluorescence when they hit the glass walls of the tubes. In 1876 the effect was named "cathode rays" by Eugen Goldstein, and today are known to be streams of electrons. Later, English physicist William Crookes investigated the effects of electric currents in gases at low pressure, and constructed what is called the Crookes tube. It is a glass cylinder mostly (but not completely) evacuated, containing electrodes for discharges of a high voltage electric current. He found, when he placed unexposed photographic plates near the tube, that some of them were flawed by shadows, though he did not investigate this effect. Crookes also noted that his cathode rays caused the glass walls of his tube to glow a dull blue colour. Crookes failed to realise that it wasn't actually the cathode rays that caused the blue glow, but the low-level X-rays produced when the cathode rays struck the glass.
Ivan Pulyui
In 1877 Ukranian-born Pulyui, a lecturer in experimental physics at the University of Vienna, constructed various designs of vacuum discharge tube to investigate their properties.[15] He continued his investigations when appointed professor at the Prague Polytechnic and in 1886 he found that that sealed photographic plates became dark when exposed to the emanations from the tubes. Early in 1896, just a few weeks after Röntgen published his first X-ray photograph, Pulyui published high-quality x-ray images in journals in Paris and London.[15] Although Pulyui had studied with Röntgen at the University of Strasbourg in the years 1873-75, his biographer Gaida (1997) asserts that his subsequent research was conducted independently.[15] The first medical X-ray made in the United States was obtained using a discharge tube of Pulyui's design. In January 1896, on reading of Röntgen's discovery, Frank Austin of Dartmouth College tested all of the discharge tubes in the physics laboratory and found that only the Pulyui tube produced X-rays. This was a result of Pulyui's inclusion of an oblique "target" of mica, used for holding samples of fluorescent material, within the tube. On 3 February 1896 Gilman Frost, professor of medicine at the college, and his brother Edwin Frost, professor of physics, exposed the wrist of Eddie McCarthy, whom Edwin had treated some weeks earlier for a fracture, to the x-rays and collected the resulting image of the broken bone on gelatin photographic plates obtained from Howard Langill, a local photographer also interested in Röntgen's work.[16]
Nikola Tesla
In April 1887, Nikola Tesla began to investigate X-rays using high voltages and tubes of his own design, as well as Crookes tubes. From his technical publications, it is indicated that he invented and developed a special single-electrode X-ray tube [17] [18], which differed from other X-ray tubes in having no target electrode. The principle behind Tesla's device is called the Bremsstrahlung process, in which a high-energy secondary X-ray emission is produced when charged particles (such as electrons) pass through matter. By 1892, Tesla performed several such experiments, but he did not categorize the emissions as what were later called X-rays. Tesla generalized the phenomenon as radiant energy of "invisible" kinds.[19] [20] Tesla stated the facts of his methods concerning various experiments in his 1897 X-ray lecture [21] before the New York Academy of Sciences. Also in this lecture, Tesla stated the method of construction and safe operation of X-ray equipment. His X-ray experimentation by vacuum high field emissions also led him to alert the scientific community to the biological hazards associated with X-ray exposure.[22]
Fernando Sanford
X-rays were first generated and detected by Fernando Sanford (1854-1948), the foundation Professor of Physics at Stanford University, in 1891. From 1886 to 1888 he had studied in the Hermann Helmholtz laboratory in Berlin, where he became familiar with the cathode rays generated in vacuum tubes when a voltage was applied across separate electrodes, as previously studied by Heinrich Hertz and Philipp Lenard. His letter of January 6, 1893 (describing his discovery as "electric photography") to The Physical Review was duly published and an article entitled Without Lens or Light, Photographs Taken With Plate and Object in Darkness appeared in the San Francisco Examiner.[23]
Heinrich Hertz
In 1892, Heinrich Hertz began experimenting and demonstrated that cathode rays could penetrate very thin metal foil (such as aluminium). Philipp Lenard, a student of Heinrich Hertz, further researched this effect. He developed a version of the Crookes tube and studied the penetration by X-rays of various materials. Philipp Lenard, though, did not realize that he was producing X-rays. Hermann von Helmholtz formulated mathematical equations for X-rays. He postulated a dispersion theory before Röntgen made his discovery and announcement. It was formed on the basis of the electromagnetic theory of light (Wiedmann's Annalen, Vol. XLVIII). However, he did not work with actual X-rays.
Thomas Edison
Diagram of a water cooled X-ray tube. (simplified/outdated) In 1895, Thomas Edison investigated materials' ability to fluoresce when exposed to X-rays, and found that calcium tungstate was the most effective substance. Around March 1896, the fluoroscope he developed became the standard for medical X-ray examinations. Nevertheless, Edison dropped X-ray research around 1903 after the death of Clarence Madison Dally, one of his glassblowers. Dally had a habit of testing X-ray tubes on his hands, and acquired a cancer in them so tenacious that both arms were amputated in a futile attempt to save his life. "At the 1901 Pan-American Exposition in Buffalo, New York, an assassin shot President William McKinley twice at close range with a .32 caliber revolver." The first bullet was removed but the second remained lodged somewhere in his stomach. McKinley survived for some time and requested that Thomas Edison "rush an X-ray machine to Buffalo to find the stray bullet. It arrived but wasn't used . . . McKinley died of septic shock due to bacterial infection."[24]
The 20th century and beyond
Before the 20th century until the 1920s, X-rays were generated in cold cathode tubes, called Crookes tubes. These tubes had to contain a small quantity of gas (invariably air) as a current will not flow in such a tube if they are fully evacuated. One of the problems with early X-ray tubes is that the generated X-rays caused the glass to absorb the gas and consequently the efficiency quickly falls off. Larger and more frequently used tubes were provided with devices for restoring the air, known as 'softeners'. This often took the form of small side tube which contained a small piece of mica – a substance that traps comparatively large quantities of air within its structure. A small electrical heater heats the mica and causes it to release a small amount of air restoring the tube's efficiency. However the mica itself has a limited life and the restore process was consequently difficult to control. In 1904, John Ambrose Fleming invented the thermionic diode valve (vacuum tube). This used a heated cathode which permitted current to flow in a vacuum. This idea was quickly applied x-ray tubes, and heated cathode x-ray tubes, called Coolidge tubes, replaced the troublesome cold cathode tubes by about 1920. Two years later, physicist Charles Barkla discovered that X-rays could be scattered by gases, and that each element had a characteristic X-ray. He won the 1917 Nobel Prize in Physics for this discovery. Max von Laue, Paul Knipping and Walter Friedrich observed for the first time the diffraction of X-rays by crystals in 1912. This discovery, along with the early works of Paul Peter Ewald, William Henry Bragg and William Lawrence Bragg gave birth to the field of X-ray crystallography. The Coolidge tube was invented the following year by William D. Coolidge which permitted continuous production of X-rays; this type of tube is still in use today.
ROSAT image of X-ray fluorescence of, and occultation of the X-ray background by, the Moon. The use of X-rays for medical purposes (to develop into the field of radiation therapy) was pioneered by Major John Hall-Edwards in Birmingham, England. In 1908, he had to have his left arm amputated owing to the spread of X-ray dermatitis[1].
The X-ray microscope was invented in the 1950s. The Chandra X-ray Observatory, launched on July 23, 1999, has been allowing the exploration of the very violent processes in the universe which produce X-rays. Unlike visible light, which is a relatively stable view of the universe, the X-ray universe is unstable, it features stars being torn apart by black holes, galactic collisions, and novas, neutron stars that build up layers of plasma that then explode into space. An X-ray laser device was proposed as part of the Reagan Administration's Strategic Defense Initiative in the 1980s, but the first and only test of the device (a sort of laser "blaster", or death ray, powered by a thermonuclear explosion) gave inconclusive results. For technical and political reasons, the overall project (including the X-ray laser) was de-funded (though was later revived by the second Bush Administration as National Missile Defense using different technologies).
0 comments:
Post a Comment